GBGS SCHEME			
USN			15EC36
UDIN	L		
Third Semester B.E. Degree Examination, Aug./Sept.2020			
Engineering Liectromagnetics			
Time: 3 hrs.			
Note: Answer any FIVE full questions, choosing ONE full question from each module.			
		Module-1	
1	a.	Define Electric Field Intensity, E. Find Eat $(2, \frac{\pi}{2}, \frac{\pi}{6})$ due to a point charge lo	ocated at
		origin. Let $Q = 40$ nC. (0)4 Marks)
	b.	Point charges of 120nC are located at A (0, 0, 1) and B(0, 0, -1) in free space. F P(x 0, 0) Also find the maximum value of \vec{E}	1nd E at
	c.	Uniform line charges of 120 nC/m each lie along the entire extent of the three co	-ordinate
		axes. Assuming free space conditions, find \vec{E} at P(-3, 2, -1)m. (0	6 Marks)
2	a	OR Derive an expression for electric field intensity at a point in cylindrical coordinat	e system
		due to an infinite line charge distribution on Z - axis. (0)6 Marks)
	b.	A point charge $Q_1 = 10 \ \mu\text{C}$ is located at $P_1(1, 2, 3)$ m in free space while $Q_2 = -3$ $P_2(1, 2, 10)$ m. i) Find vector force exerted on Q_2 by Q_1 ii) Also, find the co-	ordinates
		of P_3 at which a point charge Q_3 experiences no force. (0))7 Marks)
	С.	distributions : • a point charge, $30nC$ located at $(1, 2, 3)$.	g charge
		• Two line charge distributions of 10nC/m each located in $x = 0$ plane at y extending over a length of $4m$	$= \pm 2m$
		Module-2	15 WIATKS)
3	a.	Define 'Divergence of a Vector' and 'Gradient of a Scalar'. (0)4 Marks)
	b.	Derive the point form of Gauss's law. (0))6 Marks)
	C.	Give the flux density, $D = \frac{convectory}{r} \hat{a}_r$, c/m ² . Find • Volume charge density	
		 Total charge contained in the region, r < 2m. Total electric flux leaving the surface, r = 2m. (0))6 Marks)
		OR	
4	a.	The value of \vec{E} at P($\rho = 2$, $\phi = 40^{\circ}$, Z = 3) is given by $\vec{E} = 100 \hat{a}_{\rho} - 200 \hat{a}_{\phi} + 300 \hat{a}_{\phi}$	_z , V/m.
		Determine the incremental work required to move a 20μ C charge a distance of 6μ m	in the
	h	direction of : i) a_{ρ} ii) E -iii) $G = a_{\rho} + 3 a_{\phi} - 2 a_{z}$. (0 State and explain continuity equation of current	6 Marks)
	о. с.	Given the potential field $V = 2x^2y - 80$, and a point, P(2, 3, -4) in free space, find at	t 'P'.
		i) V ii) \vec{E} iii) $\frac{dV}{N}$ iv) \hat{a}_N .	
		Where \hat{a}_{N} is the unit vector normal to equipotential surface? (0	5 Marks)
		Module-3	
5	a.	Conducting plates at $Z = 2$ cm and $Z = 8$ cm are held at potentials of -3V and 9V resp The region between the plates is filled with a perfect dielectric of $C = 5C_0$.	ectively.
		Find V, \vec{E} and \vec{D} in the region between the plates. (0)6 Marks)
		1 01 2	

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice.

- b. Let $V = \frac{\cos 2\phi}{\rho}$ volts in free space. Find volume charge density at P(5, 60⁰, 1) using Poisson's equation. (05 Marks)
- c. State the following : i) Uniqueness theorem ii) Ampere's law iii) Stoke's theorem. (05 Marks)

OR

- 6 a. Explain Scalar and Vector magnetic potentials.
 - b. Verify Stoke's theorem for $\vec{H} = 2r \cos \theta \hat{a}_r + r \hat{a}_{\phi}$ for the path defined by $0 \le r \le 1$ and $0 \le \theta \le 90^0$. (06 Marks)
 - c. The magnetic field intensity is given by $\vec{H} = 0.1 \text{ y}^3 \hat{a}_x + 0.4 \text{ x} \hat{a}_z$, A/m. Determine the current flow through the path P₁(5, 4, 1) to P₂(5, 6, 1) to P₃(0, 6, 1) to (0, 4, 1). Also find current density, \vec{J} . (05 Marks)

Module-4

- 7 a. Obtain an expression for magnetic force between differential current elements. (05 Marks) b. A point charge, Q = 18 nC has a velocity of 5×10^6 m/s in the direction
 - $\hat{a} = 0.6 \ \hat{a}_x + 0.75 \ \hat{a}_y + 0.3 \ \hat{a}_z$. Calculate the magnitude of the force exerted on the charge by the field $\vec{B} = -3 \ \hat{a}_x + 4 \ \hat{a}_y + 6 \ \hat{a}_z$, mT. (05 Marks)
 - c. Three infinitely long parallel filaments each carry 50A in the \hat{a}_z direction. If the filament lie in the plane, x = 0 with a 2cm spacing between wires, find the vector fore per meter on each filament. (06 Marks)

OR

- 8 a. Obtain the boundary conditions at the interface between two magnetic materials. (05 Marks)b. Find Magnetization in magnetic material where
 - i) $\mu = 1.8 \times 10^{-5}$ H/m and H = 120 A/m ii) B = 300 μ T and X_m = 15. (05 Marks) c. Explain briefly the following as applicable to magnetic materials :
 - i) Magnetization ii) Permeability iii) Potential energy. (06 Marks)

Module-5

- 9 a. Write Maxwell's equations in integral form and word statement form for free space. (06 Marks)
 - b. In a certain dielectric medium, $\varepsilon_r = 5$, $\sigma = 0$ and displacement current density
 - $\vec{J}_d = 20 \cos (1.5 \times 10^8 t bx) \hat{a}_y, \mu A/m^2$. Determine electric flux density and electric field intensity. (06 Marks)
 - c. A radial magnetic field $\vec{H} = \frac{2.239 \times 10^6}{r} \cos \phi \hat{a}_r$, a/m exists in free space. Find the magnetic

flux, ϕ crossing the surface defined by $-\frac{\pi}{4} \le \phi \le \frac{\pi}{4}$, $0 \le z \le 1$, m. (04 Marks)

OR

10 a. Discuss the wave propagation of a uniform plane wave in a good conducting medium. (06 Marks)

- b. Derive the relation between \vec{E} and \vec{H} for a perfect dielectric medium. (05 Marks)
- c. Determine the skin depth for copper with conductivity of 58×10^6 , S/m at a frequency, 10 MHz. Also find α , β and V_p. (05 Marks)

***** 2 of 2

(05 Marks)